Illuminating the Mother of Qi

David Rindge, DOM, L.Ac., RN

Acupuncture Today
February 2006, Volume 07, Issue 02

Biostimulation – Life stimulation – and tissue regeneration are the first effects of laser therapy cited in much of the scientific literature. How many therapies or drugs can make such a claim? Are there ways these healing benefits might be enhanced?

Intravenous and transcutaneous laser blood irradiation as well as extracorporeal irradiation of the blood with broadband ultraviolet and other forms of non-coherent light are widely practiced throughout Russia, Germany and Eastern Europe. Although some of these techniques may seem foreign to many readers, it is possible to achieve similar effects noninvasively.

Levon Gasparyan writes, “Unlike the treatment mechanisms of local laser therapy, the medical effects of photo-hemotherapy methods are determined by predominance of systemic healing mechanisms above the local ones, increasing the functioning efficacy of vascular, respiratory, immune, other systems and organism as a whole.”

“Blood is the mother of Qi, and Qi is the commander of blood.”

A small stimulus in the right place can have far reaching effects. When as little as 1½ – 2½ % of the blood volume is irradiated with laser light, it may induce the entire circulatory volume to begin emitting biophotons. Imagine a wave of light expanding throughout the blood as more and more cells are recruited to emit biophotons.

This secondary emission known as bioluminescence or chemiluminescence may be far greater than the initial exposure to light. Now imagine light streaming from blood cells throughout the entire circulatory system, illuminating capillaries inside the liver, brain, kidney and everywhere throughout the body. The emission of biophotons by the blood itself is responsible for most effects.

Oxygen levels in venous blood rise shortly after blood irradiation and may remain high for days or weeks afterward. Blood viscosity is reduced, improving capillary blood flow and peripheral circulation. LDL and total cholesterol decrease while HDL increases. C reactive protein drops. Red blood cell formation is stimulated. White blood cell activity and numbers increase.

Blood irradiation may create the perfect vaccine, immunizing the body with its own invaders. Only a small percentage of microorganisms are killed during the initial exposure. However, during bioluminescence, all or a large portion of bacteria and viruses may be accurately targeted by biophotons. Most of the body’s own cells and friendly flora seem relatively untouched and even to benefit. Viruses, bacteria and many dysfunctional cells are highly vulnerable. It has been proposed that blood irradiation may be the most effective treatment available for HIV.

Blood irradiation is a U.S. invention.

Seattle resident, Emmett Knott, patented the first ultraviolet blood irradiation device in 1928. By the early 1940s it was being used with great success to treat bacterial and viral infections and in many autoimmune and inflammatory conditions as well.

It has been investigated thoroughly in a great many clinical trials, and numerous articles about it have been published in peer reviewed journals. Positive results have been reported in AIDS, appendicitis, atopic dermatitis, botulism, bronchial asthma, burns, cyanosis, emphysema, encephalitis, endocarditis, fever, gangrene, hepatitis, hypertension, infection (bacterial or viral), paralytic ileus, pelvic inflammatory disease, peritonitis, pneumonia, polio, rheumatoid arthritis, snakebite, thrombophlebitis, and thrombosis. Ultraviolet blood irradiation has been reported to cure the common cold and flu in case studies. However, with the advent of antibiotics and the Salk vaccine in the 1940s and 1950s, most of mainstream American medicine turned to drug therapies even though these did not exhibit ultraviolet blood irradiation’s capability in viral infection or in autoimmune and inflammatory conditions.

Kenneth Dillon writes, “Biophotonic Therapy is effective against many disorders. It was a serious lapse for American medical science to ignore the documentation – including various controlled studies that had been developed over 30 years beginning in 1928 regarding BT treatment of hundreds of thousands of patients by reputable physicians.”

The Russian Experience

By the 1970s, both laser therapy and ultraviolet blood irradiation were widely practiced in the Soviet Union. Intravenous laser blood irradiation is a Russian innovation, blending both techniques. Originally used to treat cardiovascular conditions, it was quickly found to have much broader therapeutic applications.

Thousands of practitioners throughout Eastern Europe, Russia and Germany use many forms of invasive and noninvasive blood irradiation. The list of conditions being treated is exhaustive, and research is extensive. Although specific effects and mechanisms may differ, depending upon the methods, dosage, wavelength, and coherence/non-coherence of the light source, both laser and ultraviolet blood irradiation elicit biophotonic emission by the blood.

Intravenous laser blood irradiation is easier to perform as coherent light may be transmitted through a fiberoptic light-guide directly into a blood vessel. The most popular devices in Russia for this are Helium-Neon lasers with outputs of 1-3 milliwatts. Treatments last 20-60 minutes, and a typical course is three to ten daily procedures.

To irradiate the blood with ultraviolet or other non-coherent light sources, blood must be withdrawn, anticoagulated, irradiated and then reinfused. This requires a relatively large needle and excellent IV skills. Ultraviolet blood irradiation has been practiced in the U.S. for more than 75 years.

Noninvasive Laser Blood Irradiation

An advantage of coherent, laser light over all other light sources is that it can penetrate at red to near infrared wavelengths to reach the blood noninvasively. Whenever laser therapy is given, some blood will be irradiated, and this must surely account for many of the non-local health benefits which have been observed.

Two methods might be used to maximize the absorption of laser light by the blood noninvasively. One may treat either over large blood vessels or over capillary networks (muscle, mucous membranes, sublingually) in light contact. Although twenty milliwatts transcutaneously has been estimated as equivalent to one milliwatt intravenously if one is using Helium-Neon lasers , treating noninvasively is an art as well as a science. Effects are less predictable. As in any form of therapy, outcomes will be maximized with knowledge, experience and the right clinical tools.

Commentary

Laser therapy adds energy to activate immunity and increase the health of living systems. When we understand its deeper effects, we will know much more about ourselves. Laser therapy at low intensity is painless, without risk of infection or trauma and has enormous potential benefits which deserve to be thoroughly funded and explored.

Bibliography

  1. Dillon, Kenneth J., Close-To-Nature Medicine, Scientia Press, Washington, D.C., 2003.
  2. Dillon, Kenneth J., Healing Photons: The Science and Art of Blood Irradiation Therapy, Scientia Press, Washington, D.C., 1998.
  3. Douglass, William Campbell. M.D., Into the Light: Tomorrow’s Medicine Today, Second Opinion Publishing, Atlanta, Georgia, 1993.
  4. Gasparyan, Levon, Laser Irradiation of the Blood, Published jointly in Laser Partner www.laserpartner.org Laser World, www.laser.nu, 10.1.2003.
  5. Samoilova, K.A. Role of the circulating blood in initiation of therapeutic effects of visible light. Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia.
  6. Tuner, J. and Hode, L. (1999) Low Level Laser Therapy – Clinical Practice and Scientific Background, Prima Books, Grängesberg, Sweden.